M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment.
نویسندگان
چکیده
Alterations in synaptic input, persisting for hours to days, elicit homeostatic plastic changes in the axon initial segment (AIS), which is pivotal for spike generation. Here, in hippocampal pyramidal neurons of both primary cultures and slices, we triggered a unique form of AIS plasticity by selectively targeting M-type K+ channels, which predominantly localize to the AIS and are essential for tuning neuronal excitability. While acute M-current inhibition via cholinergic activation or direct channel block made neurons more excitable, minutes to hours of sustained M-current depression resulted in a gradual reduction in intrinsic excitability. Dual soma-axon patch-clamp recordings combined with axonal Na+ imaging and immunocytochemistry revealed that these compensatory alterations were associated with a distal shift of the spike trigger zone and distal relocation of FGF14, Na+, and Kv7 channels but not ankyrin G. The concomitant distal redistribution of FGF14 together with Nav and Kv7 segments along the AIS suggests that these channels relocate as a structural and functional unit. These fast homeostatic changes were independent of l-type Ca2+ channel activity but were contingent on the crucial AIS protein, protein kinase CK2. Using compartmental simulations, we examined the effects of varying the AIS position relative to the soma and found that AIS distal relocation of both Nav and Kv7 channels elicited a decrease in neuronal excitability. Thus, alterations in M-channel activity rapidly trigger unique AIS plasticity to stabilize network excitability.
منابع مشابه
Rapid Modulation of Axon Initial Segment Length Influences Repetitive Spike Firing
Neurons implement a variety of plasticity mechanisms to alter their function over timescales ranging from seconds to days. One powerful means of controlling excitability is to directly modulate the site of spike initiation, the axon initial segment (AIS). However, all plastic structural AIS changes reported thus far have been slow, involving days of neuronal activity perturbation. Here, we show...
متن کاملThe Axon Initial Segment, 50Years Later: A Nexus for Neuronal Organization and Function.
The axon initial segment is a highly specialized neuronal compartment, identified almost 50years ago by the pioneers of electron microscopy. Located in the first 50μm of the axon, it contains unique cytoskeletal features and concentrates a repertoire of specific scaffold and membrane proteins that assembles just after axon determination. The axon initial segment (AIS) supports two crucial physi...
متن کاملStructural and Functional Plasticity at the Axon Initial Segment
The axon initial segment (AIS) is positioned between the axonal and somato-dendritic compartments and plays a pivotal role in triggering action potentials (APs) and determining neuronal output. It is now widely accepted that structural properties of the AIS, such as length and/or location relative to the soma, change in an activity-dependent manner. This structural plasticity of the AIS is know...
متن کاملNa+ channels get anchored…with a little help
Neurons have high densities of voltage-gated Na(+) channels that are restricted to axon initial segments and nodes of Ranvier, where they are responsible for initiating and propagating action potentials. New findings (Bréchet, A., M.-P. Fache, A. Brachet, G. Ferracci, A. Baude, M. Irondelle, S. Pereira, C. Leterrier, and B. Dargent. 2008. J. Cell Biol. 183:1101-1114) reveal that phosphorylation...
متن کاملBuilding and maintaining the axon initial segment.
The axon initial segment is a unique neuronal subregion involved in the initiation of action potentials and in the control of axonal identity. Recent work has helped our understanding of how this specialised structure develops, not least in identifying possible mechanisms leading to the localisation of the AIS's master organiser protein, ankyrin-G. The most exciting current work, however, focus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 47 شماره
صفحات -
تاریخ انتشار 2017